Latest Update: Impact of current COVID-19 situation has been considered in this report while making the analysis.
Global High Heat Resistant Engineering Plastics Market by Type (Polyphenylene Sulfide (PPS), Polyimide (PI), Polysulfone (PSU), Liquid-Crystal Polymer (LCP), Polyetheretherketone (PEEK), Others), By Application (Automotive, Electrical and Electronic, Aerospace & Defense, Machinery & Equipment, Medical Devices, Others) and Region (North America, Latin America, Europe, Asia Pacific and Middle East & Africa), Forecast From 2022 To 2030-report

Global High Heat Resistant Engineering Plastics Market by Type (Polyphenylene Sulfide (PPS), Polyimide (PI), Polysulfone (PSU), Liquid-Crystal Polymer (LCP), Polyetheretherketone (PEEK), Others), By Application (Automotive, Electrical and Electronic, Aerospace & Defense, Machinery & Equipment, Medical Devices, Others) and Region (North America, Latin America, Europe, Asia Pacific and Middle East & Africa), Forecast From 2022 To 2030

Report ID: 246267 4200 Chemical & Material 377 195 Pages 4.6 (30)
                                          

Market Overview:


The global high heat resistant engineering plastics market is expected to grow at a CAGR of 6.5% during the forecast period from 2018 to 2030. The growth of the market can be attributed to the increasing demand for high heat resistant engineering plastics from various end-use industries, such as automotive, electrical and electronic, aerospace and defense, machinery and equipment, medical devices, and others. In addition, the growing awareness about the benefits of using high heat resistant engineering plastics over traditional materials is also contributing to the growth of this market. Based on type, polyphenylene sulfide (PPS) is expected to lead the global high heat resistant engineering plastics market during the forecast period due to its excellent properties such as resistance against chemicals and solvents; good mechanical properties; thermal stability; dimensional stability; low flammability; and good creep resistance.


Global High Heat Resistant Engineering Plastics Industry Outlook


Product Definition:


High Heat Resistant Engineering Plastics are materials used in engineering and manufacturing that can withstand high levels of heat without melting or warping. These plastics are often used in applications where regular plastics would not be able to withstand the heat, such as automotive parts, cookware, and outdoor furniture. High Heat Resistant Engineering Plastics can be made from a variety of materials, including polypropylene (PP), polyethylene terephthalate (PET), nylon 6/6, and PEEK.


Polyphenylene Sulfide (PPS):


Polyphenylene sulfide (PPS) is a synthetic thermosetting polymer with high heat resistance. It has the ability to withstand temperatures up to 270°C, which makes it suitable for use in applications that require higher operating temperatures. PPS offers excellent mechanical properties and dimensional stability at elevated temperature, making it an ideal material for manufacturing components used in automotive & aerospace industries and chemical processing industries.


Polyimide (PI):


Polyimide (PI) is a high-performance engineering plastic with excellent chemical and mechanical properties. It offers superior performance in extreme heat environments, thus making it ideal for use in the automotive industry. Polyimide resins are used to produce films, fibers & powders which find application in various industries including aerospace, automotive & transportation and electronics among others.


Application Insights:


The automotive segment led the global market and accounted for more than a 29% share of the overall revenue in 2017. The growing demand for lightweight materials with high strength and durability is expected to drive the product demand in this application over the forecast period. High heat resistant engineering plastics are used extensively in automobile manufacturing owing to stringent environmental regulations regarding vehicular emissions, fuel consumption, and carbon footprint.


High heat resistance engineering plastics are also widely used in aircraft components including landing gear doors, airframe structural support, leading and trailing edge panels on aero-propulsion vehicles such as helicopters or wind turbines blades due to their excellent properties such as impact resistance & wear resistance along with low weight compared to conventional metals & alloys. Other prominent end-use industries include electrical & electronic equipment where polyimide based products find applications across power distribution units (PDUs), circuit breakers/fuses/surge protectors that operate at elevated temperatures up to 250°C.


Regional Analysis:


Asia Pacific is expected to be the fastest-growing regional market with a CAGR of XX% from 2018 to 2030 owing to rapid industrialization and increasing per capita income in emerging economies such as China, India, and Indonesia. The region is witnessing an increase in demand for high heat resistant plastics due to the rising number of manufacturing industries including automotive, electrical & electronics, aerospace & defense.


The Asia Pacific was followed by Europe which accounted for over 25% of the global revenue share in 2017 on account of high product adoption across major end-use industries including automotive and machinery coupled with stringent regulations regarding vehicle safety standards by governments across countries such as Germany, France Italy among many more.


North America also had a significant market share owing to early technology adoption by key industry players along with continuous R&D activities carried out within academic institutes and private companies based in U.S.


Growth Factors:


  • Increasing demand from automotive and electrical & electronics industries
  • Growing awareness about the benefits of high heat resistant engineering plastics over traditional materials
  • Rising investments in research and development by leading players to develop new products
  • Proliferation of advanced manufacturing technologies that help reduce production costs
  • Growing popularity of lightweight and eco-friendly materials

Scope Of The Report

Report Attributes

Report Details

Report Title

High Heat Resistant Engineering Plastics Market Research Report

By Type

Polyphenylene Sulfide (PPS), Polyimide (PI), Polysulfone (PSU), Liquid-Crystal Polymer (LCP), Polyetheretherketone (PEEK), Others

By Application

Automotive, Electrical and Electronic, Aerospace & Defense, Machinery & Equipment, Medical Devices, Others

By Companies

Toray, DIC, Solvay, Celanese, Kureha, SK Chemical, Tosoh, Sumitomo Chemical, SABIC, Polyplastics, Evonik, Zhejiang NHU, Chongqing Glion

Regions Covered

North America, Europe, APAC, Latin America, MEA

Base Year

2021

Historical Year

2019 to 2020 (Data from 2010 can be provided as per availability)

Forecast Year

2030

Number of Pages

195

Number of Tables & Figures

137

Customization Available

Yes, the report can be customized as per your need.


Global High Heat Resistant Engineering Plastics Market Report Segments:

The global High Heat Resistant Engineering Plastics market is segmented on the basis of:

Types

Polyphenylene Sulfide (PPS), Polyimide (PI), Polysulfone (PSU), Liquid-Crystal Polymer (LCP), Polyetheretherketone (PEEK), Others

The product segment provides information about the market share of each product and the respective CAGR during the forecast period. It lays out information about the product pricing parameters, trends, and profits that provides in-depth insights of the market. Furthermore, it discusses latest product developments & innovation in the market.

Applications

Automotive, Electrical and Electronic, Aerospace & Defense, Machinery & Equipment, Medical Devices, Others

The application segment fragments various applications of the product and provides information on the market share and growth rate of each application segment. It discusses the potential future applications of the products and driving and restraining factors of each application segment.

Some of the companies that are profiled in this report are:

  1. Toray
  2. DIC
  3. Solvay
  4. Celanese
  5. Kureha
  6. SK Chemical
  7. Tosoh
  8. Sumitomo Chemical
  9. SABIC
  10. Polyplastics
  11. Evonik
  12. Zhejiang NHU
  13. Chongqing Glion

Global High Heat Resistant Engineering Plastics Market Overview


Highlights of The High Heat Resistant Engineering Plastics Market Report:

  1. The market structure and projections for the coming years.
  2. Drivers, restraints, opportunities, and current trends of market.
  3. Historical data and forecast.
  4. Estimations for the forecast period 2030.
  5. Developments and trends in the market.
  6. By Type:

    1. Polyphenylene Sulfide (PPS)
    2. Polyimide (PI)
    3. Polysulfone (PSU)
    4. Liquid-Crystal Polymer (LCP)
    5. Polyetheretherketone (PEEK)
    6. Others
  1. By Application:

    1. Automotive
    2. Electrical and Electronic
    3. Aerospace & Defense
    4. Machinery & Equipment
    5. Medical Devices
    6. Others
  1. Market scenario by region, sub-region, and country.
  2. Market share of the market players, company profiles, product specifications, SWOT analysis, and competitive landscape.
  3. Analysis regarding upstream raw materials, downstream demand, and current market dynamics.
  4. Government Policies, Macro & Micro economic factors are also included in the report.

We have studied the High Heat Resistant Engineering Plastics Market in 360 degrees via. both primary & secondary research methodologies. This helped us in building an understanding of the current market dynamics, supply-demand gap, pricing trends, product preferences, consumer patterns & so on. The findings were further validated through primary research with industry experts & opinion leaders across countries. The data is further compiled & validated through various market estimation & data validation methodologies. Further, we also have our in-house data forecasting model to predict market growth up to 2030.

Regional Analysis

  • North America
  • Europe
  • Asia Pacific
  • Middle East & Africa
  • Latin America

Note: A country of choice can be added in the report at no extra cost. If more than one country needs to be added, the research quote will vary accordingly.

The geographical analysis part of the report provides information about the product sales in terms of volume and revenue in regions. It lays out potential opportunities for the new entrants, emerging players, and major players in the region. The regional analysis is done after considering the socio-economic factors and government regulations of the countries in the regions.

How you may use our products:

  • Correctly Positioning New Products
  • Market Entry Strategies
  • Business Expansion Strategies
  • Consumer Insights
  • Understanding Competition Scenario
  • Product & Brand Management
  • Channel & Customer Management
  • Identifying Appropriate Advertising Appeals

Global High Heat Resistant Engineering Plastics Market Statistics

8 Reasons to Buy This Report

  1. Includes a Chapter on the Impact of COVID-19 Pandemic On the Market
  2. Report Prepared After Conducting Interviews with Industry Experts & Top Designates of the Companies in the Market
  3. Implemented Robust Methodology to Prepare the Report
  4. Includes Graphs, Statistics, Flowcharts, and Infographics to Save Time
  5. Industry Growth Insights Provides 24/5 Assistance Regarding the Doubts in the Report
  6. Provides Information About the Top-winning Strategies Implemented by Industry Players.
  7. In-depth Insights On the Market Drivers, Restraints, Opportunities, and Threats
  8. Customization of the Report Available

Frequently Asked Questions?


High heat resistant engineering plastics are a type of plastic that can withstand high temperatures. They are often used in products that need to be able to withstand high temperatures, such as ovens and cookware.

Some of the major players in the high heat resistant engineering plastics market are Toray, DIC, Solvay, Celanese, Kureha, SK Chemical, Tosoh, Sumitomo Chemical, SABIC, Polyplastics, Evonik, Zhejiang NHU, Chongqing Glion.

The high heat resistant engineering plastics market is expected to grow at a compound annual growth rate of 6.5%.

                                            
Chapter 1 Executive Summary
Chapter 2 Assumptions and Acronyms Used
Chapter 3 Research Methodology
Chapter 4 High Heat Resistant Engineering Plastics Market Overview    4.1 Introduction       4.1.1 Market Taxonomy       4.1.2 Market Definition       4.1.3 Macro-Economic Factors Impacting the Market Growth    4.2 High Heat Resistant Engineering Plastics Market Dynamics       4.2.1 Market Drivers       4.2.2 Market Restraints       4.2.3 Market Opportunity    4.3 High Heat Resistant Engineering Plastics Market - Supply Chain Analysis       4.3.1 List of Key Suppliers       4.3.2 List of Key Distributors       4.3.3 List of Key Consumers    4.4 Key Forces Shaping the High Heat Resistant Engineering Plastics Market       4.4.1 Bargaining Power of Suppliers       4.4.2 Bargaining Power of Buyers       4.4.3 Threat of Substitution       4.4.4 Threat of New Entrants       4.4.5 Competitive Rivalry    4.5 Global High Heat Resistant Engineering Plastics Market Size & Forecast, 2018-2028       4.5.1 High Heat Resistant Engineering Plastics Market Size and Y-o-Y Growth       4.5.2 High Heat Resistant Engineering Plastics Market Absolute $ Opportunity

Chapter 5 Global High Heat Resistant Engineering Plastics Market Analysis and Forecast by Type
   5.1 Introduction
      5.1.1 Key Market Trends & Growth Opportunities by Type
      5.1.2 Basis Point Share (BPS) Analysis by Type
      5.1.3 Absolute $ Opportunity Assessment by Type
   5.2 High Heat Resistant Engineering Plastics Market Size Forecast by Type
      5.2.1 Polyphenylene Sulfide (PPS)
      5.2.2 Polyimide (PI)
      5.2.3 Polysulfone (PSU)
      5.2.4 Liquid-Crystal Polymer (LCP)
      5.2.5 Polyetheretherketone (PEEK)
      5.2.6 Others
   5.3 Market Attractiveness Analysis by Type

Chapter 6 Global High Heat Resistant Engineering Plastics Market Analysis and Forecast by Applications
   6.1 Introduction
      6.1.1 Key Market Trends & Growth Opportunities by Applications
      6.1.2 Basis Point Share (BPS) Analysis by Applications
      6.1.3 Absolute $ Opportunity Assessment by Applications
   6.2 High Heat Resistant Engineering Plastics Market Size Forecast by Applications
      6.2.1 Automotive
      6.2.2 Electrical and Electronic
      6.2.3 Aerospace & Defense
      6.2.4 Machinery & Equipment
      6.2.5 Medical Devices
      6.2.6 Others
   6.3 Market Attractiveness Analysis by Applications

Chapter 7 Global High Heat Resistant Engineering Plastics Market Analysis and Forecast by Region
   7.1 Introduction
      7.1.1 Key Market Trends & Growth Opportunities by Region
      7.1.2 Basis Point Share (BPS) Analysis by Region
      7.1.3 Absolute $ Opportunity Assessment by Region
   7.2 High Heat Resistant Engineering Plastics Market Size Forecast by Region
      7.2.1 North America
      7.2.2 Europe
      7.2.3 Asia Pacific
      7.2.4 Latin America
      7.2.5 Middle East & Africa (MEA)
   7.3 Market Attractiveness Analysis by Region

Chapter 8 Coronavirus Disease (COVID-19) Impact 
   8.1 Introduction 
   8.2 Current & Future Impact Analysis 
   8.3 Economic Impact Analysis 
   8.4 Government Policies 
   8.5 Investment Scenario

Chapter 9 North America High Heat Resistant Engineering Plastics Analysis and Forecast
   9.1 Introduction
   9.2 North America High Heat Resistant Engineering Plastics Market Size Forecast by Country
      9.2.1 U.S.
      9.2.2 Canada
   9.3 Basis Point Share (BPS) Analysis by Country
   9.4 Absolute $ Opportunity Assessment by Country
   9.5 Market Attractiveness Analysis by Country
   9.6 North America High Heat Resistant Engineering Plastics Market Size Forecast by Type
      9.6.1 Polyphenylene Sulfide (PPS)
      9.6.2 Polyimide (PI)
      9.6.3 Polysulfone (PSU)
      9.6.4 Liquid-Crystal Polymer (LCP)
      9.6.5 Polyetheretherketone (PEEK)
      9.6.6 Others
   9.7 Basis Point Share (BPS) Analysis by Type 
   9.8 Absolute $ Opportunity Assessment by Type 
   9.9 Market Attractiveness Analysis by Type
   9.10 North America High Heat Resistant Engineering Plastics Market Size Forecast by Applications
      9.10.1 Automotive
      9.10.2 Electrical and Electronic
      9.10.3 Aerospace & Defense
      9.10.4 Machinery & Equipment
      9.10.5 Medical Devices
      9.10.6 Others
   9.11 Basis Point Share (BPS) Analysis by Applications 
   9.12 Absolute $ Opportunity Assessment by Applications 
   9.13 Market Attractiveness Analysis by Applications

Chapter 10 Europe High Heat Resistant Engineering Plastics Analysis and Forecast
   10.1 Introduction
   10.2 Europe High Heat Resistant Engineering Plastics Market Size Forecast by Country
      10.2.1 Germany
      10.2.2 France
      10.2.3 Italy
      10.2.4 U.K.
      10.2.5 Spain
      10.2.6 Russia
      10.2.7 Rest of Europe
   10.3 Basis Point Share (BPS) Analysis by Country
   10.4 Absolute $ Opportunity Assessment by Country
   10.5 Market Attractiveness Analysis by Country
   10.6 Europe High Heat Resistant Engineering Plastics Market Size Forecast by Type
      10.6.1 Polyphenylene Sulfide (PPS)
      10.6.2 Polyimide (PI)
      10.6.3 Polysulfone (PSU)
      10.6.4 Liquid-Crystal Polymer (LCP)
      10.6.5 Polyetheretherketone (PEEK)
      10.6.6 Others
   10.7 Basis Point Share (BPS) Analysis by Type 
   10.8 Absolute $ Opportunity Assessment by Type 
   10.9 Market Attractiveness Analysis by Type
   10.10 Europe High Heat Resistant Engineering Plastics Market Size Forecast by Applications
      10.10.1 Automotive
      10.10.2 Electrical and Electronic
      10.10.3 Aerospace & Defense
      10.10.4 Machinery & Equipment
      10.10.5 Medical Devices
      10.10.6 Others
   10.11 Basis Point Share (BPS) Analysis by Applications 
   10.12 Absolute $ Opportunity Assessment by Applications 
   10.13 Market Attractiveness Analysis by Applications

Chapter 11 Asia Pacific High Heat Resistant Engineering Plastics Analysis and Forecast
   11.1 Introduction
   11.2 Asia Pacific High Heat Resistant Engineering Plastics Market Size Forecast by Country
      11.2.1 China
      11.2.2 Japan
      11.2.3 South Korea
      11.2.4 India
      11.2.5 Australia
      11.2.6 South East Asia (SEA)
      11.2.7 Rest of Asia Pacific (APAC)
   11.3 Basis Point Share (BPS) Analysis by Country
   11.4 Absolute $ Opportunity Assessment by Country
   11.5 Market Attractiveness Analysis by Country
   11.6 Asia Pacific High Heat Resistant Engineering Plastics Market Size Forecast by Type
      11.6.1 Polyphenylene Sulfide (PPS)
      11.6.2 Polyimide (PI)
      11.6.3 Polysulfone (PSU)
      11.6.4 Liquid-Crystal Polymer (LCP)
      11.6.5 Polyetheretherketone (PEEK)
      11.6.6 Others
   11.7 Basis Point Share (BPS) Analysis by Type 
   11.8 Absolute $ Opportunity Assessment by Type 
   11.9 Market Attractiveness Analysis by Type
   11.10 Asia Pacific High Heat Resistant Engineering Plastics Market Size Forecast by Applications
      11.10.1 Automotive
      11.10.2 Electrical and Electronic
      11.10.3 Aerospace & Defense
      11.10.4 Machinery & Equipment
      11.10.5 Medical Devices
      11.10.6 Others
   11.11 Basis Point Share (BPS) Analysis by Applications 
   11.12 Absolute $ Opportunity Assessment by Applications 
   11.13 Market Attractiveness Analysis by Applications

Chapter 12 Latin America High Heat Resistant Engineering Plastics Analysis and Forecast
   12.1 Introduction
   12.2 Latin America High Heat Resistant Engineering Plastics Market Size Forecast by Country
      12.2.1 Brazil
      12.2.2 Mexico
      12.2.3 Rest of Latin America (LATAM)
   12.3 Basis Point Share (BPS) Analysis by Country
   12.4 Absolute $ Opportunity Assessment by Country
   12.5 Market Attractiveness Analysis by Country
   12.6 Latin America High Heat Resistant Engineering Plastics Market Size Forecast by Type
      12.6.1 Polyphenylene Sulfide (PPS)
      12.6.2 Polyimide (PI)
      12.6.3 Polysulfone (PSU)
      12.6.4 Liquid-Crystal Polymer (LCP)
      12.6.5 Polyetheretherketone (PEEK)
      12.6.6 Others
   12.7 Basis Point Share (BPS) Analysis by Type 
   12.8 Absolute $ Opportunity Assessment by Type 
   12.9 Market Attractiveness Analysis by Type
   12.10 Latin America High Heat Resistant Engineering Plastics Market Size Forecast by Applications
      12.10.1 Automotive
      12.10.2 Electrical and Electronic
      12.10.3 Aerospace & Defense
      12.10.4 Machinery & Equipment
      12.10.5 Medical Devices
      12.10.6 Others
   12.11 Basis Point Share (BPS) Analysis by Applications 
   12.12 Absolute $ Opportunity Assessment by Applications 
   12.13 Market Attractiveness Analysis by Applications

Chapter 13 Middle East & Africa (MEA) High Heat Resistant Engineering Plastics Analysis and Forecast
   13.1 Introduction
   13.2 Middle East & Africa (MEA) High Heat Resistant Engineering Plastics Market Size Forecast by Country
      13.2.1 Saudi Arabia
      13.2.2 South Africa
      13.2.3 UAE
      13.2.4 Rest of Middle East & Africa (MEA)
   13.3 Basis Point Share (BPS) Analysis by Country
   13.4 Absolute $ Opportunity Assessment by Country
   13.5 Market Attractiveness Analysis by Country
   13.6 Middle East & Africa (MEA) High Heat Resistant Engineering Plastics Market Size Forecast by Type
      13.6.1 Polyphenylene Sulfide (PPS)
      13.6.2 Polyimide (PI)
      13.6.3 Polysulfone (PSU)
      13.6.4 Liquid-Crystal Polymer (LCP)
      13.6.5 Polyetheretherketone (PEEK)
      13.6.6 Others
   13.7 Basis Point Share (BPS) Analysis by Type 
   13.8 Absolute $ Opportunity Assessment by Type 
   13.9 Market Attractiveness Analysis by Type
   13.10 Middle East & Africa (MEA) High Heat Resistant Engineering Plastics Market Size Forecast by Applications
      13.10.1 Automotive
      13.10.2 Electrical and Electronic
      13.10.3 Aerospace & Defense
      13.10.4 Machinery & Equipment
      13.10.5 Medical Devices
      13.10.6 Others
   13.11 Basis Point Share (BPS) Analysis by Applications 
   13.12 Absolute $ Opportunity Assessment by Applications 
   13.13 Market Attractiveness Analysis by Applications

Chapter 14 Competition Landscape 
   14.1 High Heat Resistant Engineering Plastics Market: Competitive Dashboard
   14.2 Global High Heat Resistant Engineering Plastics Market: Market Share Analysis, 2019
   14.3 Company Profiles (Details – Overview, Financials, Developments, Strategy) 
      14.3.1 Toray
      14.3.2 DIC
      14.3.3 Solvay
      14.3.4 Celanese
      14.3.5 Kureha
      14.3.6 SK Chemical
      14.3.7 Tosoh
      14.3.8 Sumitomo Chemical
      14.3.9 SABIC
      14.3.10 Polyplastics
      14.3.11 Evonik
      14.3.12 Zhejiang NHU
      14.3.13 Chongqing Glion

Our Trusted Clients

Contact Us